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EXISTENCE AND UNIQUENESS OF EQUILIBRIUM POINTS FOR
CONCAVE N-PERSON GAMES!

By J. B. ROSEN

A constrained r-person game is considered in which the constraints for each player,
as well as his payoff function, may depend on the strategy of every player. The existence
of an equilibrium point for such a game is shown. By requiring appropriate concavity
in the payoff functions a concave game is defined. It is proved that there is a unique
equilibrium point for every strictly concave game. A dynamic model for nonequilibrium
situations is proposed. This model consists of a system of differential equations which
specify the rate of change of each player’s strategy. It is shown that for a strictly con-
cave game the system is globally asymptotically stable with respect to the unique
equilibrium point of the game. Finally, it is shown how a gradient method suitable for
a concave mathematical programming problem can be used to find the equilibrium
point for a concave game.

1. INTRODUCTION

THE CONCEPT of an equilibrium point for an n-person game was introduced by
Nash [14, 15], who proved the existence of such points under certain assumptions
on each player’s strategy space and corresponding payoff function. He showed
that if each player is restricted to a simplex in his own strategy space and if the
payoff functions are bilinear functions of the strategies, then an equilibrium point
exists. This result has been generalized to an abstract economy by Arrow and
Debreu [1]and McKenzie [13], where each player’s strategy space may depend on the
strategy of the other players (a situation which may also occur in coalition games).

This more general problem is considered here. Specifically, it is only required that
every joint strategy, represented by a point in the product space of the individual
strategy spaces, lie in a convex, closed, and bounded region R in the product space
and that each player’s payoff function ¢;, i=1, . . ., n, be concave in his own stra-
tegy. The existence of an equilibrium point for this concave n-person game is shown
in Section 2, Theorem 1, using a mapping of R into R and the Kakutani fixed point
theorem [8].

One of the difficulties that has limited the usefulness of the concept of an equili-
brium point for an n-person game is the lack of uniqueness of such points, as shown
by the fact that many games possess an infinite number of equilibrium points (for
example, see Shapley [18]). This difficulty is overcome by requiring that the payoff
functions satisfy an additional concavity requirement, which is called diagonal
strict concavity. With this additional requirement it is shown in Section 3, in
Theorems 2, 3, and 4, that every concave n-person game has a unique equilibrium
point. Theorem 2 shows uniqueness for a game with orthogonal constraint sets,

1 Prepared under NASA grant Ns G565 at Stanford University. Reproduction in whole or in
part is permitted for any purpose of the United States Government.
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that is, where R is the direct product of the individual player’s strategy spaces. In
Theorem 3 the more general case of coupled constraints is considered. A normalized
equilibrium point is defined in terms of a specified positive constant r; for each
player, which determines the value of the dual variables for the ith player. Theorems
3 and 4 show that a unique normalized equilibrium point exists for each specified
value of the parameters r;. The monotone behavior at the equilibrium point of the
payoff function ¢, with respect to r; is shown in Theorem 5. Section 3 is completed
by giving a sufficient condition for diagonal strict concavity in terms of certain
Hessian matrices of the ¢;. The interesting case where each ¢; is bilinear in the
strategies is discussed to illustrate this condition. The bimatrix game [11, 12] is a
special case of this bilinear payoff function.

In Section 4 we consider a reasonable dynamic model of the n-person concave
game. It is assumed that if the game is not at equilibrium, each player will attempt
to change his own strategy so as to obtain the maximum rate of change of his own
payoff function with respect to a change in his own strategy. It is shown that the
system of differential equations obtained in this way has the property that every
solution starting in R remains in R (Theorem 7). The stability of the system is
considered in Theorems 8 and 9. It is shown that when concavity conditions suffi-
cient for uniqueness are satisfied the system of differential equations is globally
asymptotically stable. Furthermore, starting at any feasible point in the strategy
space R, the system of differential equations will always converge to the unique
equilibrium point of the original n-person concave game. Thus the dynamic model
and the concave game have the same unique equilibrium point. The stability proof
uses the square of the norm of the right-hand side of the differential equaticns as a
Liapunov function to show that the norm approaches zero. The stability of a
different dynamic model of a competitive equilibrium represented by a system of
differential equations has previously been investigated [2, 19].

In Section 5 it is shown that the unique equilibrium point to the concave game
can be found computationally by using a gradient method suitable for a concave
mathematical programming problem [17, 6]. This may be considered as a generali-
zation of the well-known relationship between the two-person zero-sum game and
linear programming [7]. It should also be noted that the general concave con-
strained maximization problem is obtained for the case n=1, so that such a problem
can be considered as a special case of the n-person concave game. For this special
case of n=1, the results of Sections 2 and 3 reduce to known results. However, the
results of Section 4, in particular Theorem 7, appear to be new even for n=1.

2. FORMULATION AND EXISTENCE OF EQUILIBRIUM POINT

The concave n-person game to be considered is described in terms of the in-
dividual strategy vector for each of the n players. The strategy of the ith player is
represented by the vector x; in the Euclidian space E™, i=1, ..., n. The vector
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xeE™ then denotes the simultaneous strategies of all players, where E™ is the pro-
duct space E™ xE™ x...xE™ and m= X]_m; The allowed strategies will be
limited by the requirement that x be selected from a convex, closed, and bounded
set R E™. If we denote by P; the projection of R on E™, we will also consider the
convex, closed, and bounded product set S2R, given by S=P; xP, X...xP,.
This is illustrated in Figure 1 for n=2.

XZ{
s
| R
Py
|
t
1]
P X
FIGURE 1

In most articles on game theory consideration is limited to the case where each
player’s strategy x; is restricted to a convex set R;= E™! in his own strategy space.
For example, in Nash [14, 15] the set R, is the simplex in E™:. In this special case
where the constraint sets are orthogonal we have P;= R;, so that R=S=R; X R, X
... X R,. In the general case where Rc S we will say that R is a coupled constraint
set. .

The payoff function for the ith player depends on the strategies of all the other
players as well as on his own strategy, and is given by the function ¢;(x)=¢;(x,,

v s X5« - -5 X,)- It Will be assumed that for xeS, ¢;(x) is continuous in x and is
concave in x; for each fixed value of (x;, ..., X;—1, Xj4+15 - - -» X,)- With this for-
mulation an equilibrium point of the n-person concave game is given by a point
x°e R such that
21)  @(x%)=max {g,(x3, .., Vi XD | X3, . Vi - . XxDER}

vi (i=1,...,n).
At such a point no player can increase his payoff by a unilateral change in his
strategy.

The results to follow make use of the function p(x, y) defined for (x, y)e R X R by

(22) P(x’ y) = izl (Pi(xb e Vs xn) .

We observe that for (x, yY)e R x R we have (xq, ..., Vi, . .., X,)€S, i=1,...,n, s0
that p(x, y) is continuous in x and y and is concave in y for every fixed x, for (x, y)e
R x R. We now prove the existence theorem for the concave n-person game.

THEOREM 1: An equilibrium point exists for every concave n-person game.
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Proor: Consider the point-to-set mapping xe R—»I'x< R, given by

(23)  Ix={y|p(x, y)=max p(x, 2)} .

It follows from the continuity of p(x, z) and the concavity in z of p(x, z) for fixed x
that I' is an upper semicontinuous mapping that maps each point of the convex,
compact set R into a closed convex subset of R. Then by the Kakutani fixed point
theorem [8, 9], there exists a point x°e R such that x°e I'x°, or

2.4 p(x°, x®)=max p(x°, z) .

zeR
The fixed point x° is an equilibrium point satisfying (2.1). For suppose that it
were not. Then, say for i=1, there would be a point x,=X, such that x=(x?, . . ., X,,

. »XYeR and ¢,(X) > ¢,(x°). But then we have p(x°, X) > p(x°, x°), which contra-
dicts (2.4).

3. UNIQUENESS OF EQUILIBRIUM POINT

In order to discuss the uniqueness of an equilibrium point we must describe the
convex set R more explicitly. For the general coupled constraint set where R<.S, we
shall describe R by means of the mapping A(x) of E™— E¥, where each component
hi(x),j=1, ..., k of h(x) is a concave function of x. It is assumed that
B.1)  R={x|h(x)=0}
is nonvoid and bounded. It follows from the concavity of the 4;(x) that the closed
set R is convex. For the special case of the orthogonal constraint set R=S=R, X
R, x...XxR,, we consider the nonvoid and bounded sets
(2  R={x;|k(x)=0} (=1,...,n)
where each component A;;(x;), j=1, ..., k;, of hy(x), i=1,...,n, is a concave
function of x;. Thus, R;is a convex, closed, and bounded set in E™!. We shall also
assume that the set R contains a point that is strictly interior to every nonlinear
constraint, that is, 3X€ R, such that /;(X) >0 for every nonlinear constraint /;(x) >
0. This is a sufficient condition for the satisfaction of the Kuhn-Tucker constraint
qualification [3].

We wish to use the differential form of the necessary and sufficient Kuhn-Tucker
conditions for a constrained maximum [10]. We therefore make the additional
assumption that the A;(x) possess continuous first derivatives for xe R. We also
assume that for xe R the payoff function ¢;(x) for the ith player possesses continu-
ous first derivatives with respect to the components of x;. For any scalar function
o(x) we denote by V;p(x) the gradient with respect to x; of @(x) .Thus V;p(x)e E™.

The Kuhn-Tucker conditions equivalent to (2.1) with R given by (3.1) can now
be stated as follows:

(3 (x>0,
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and for i=1,...,n, 3u) >0, u) e E¥, such that

(34  u)'h(x*)=0

and

(35) (Pi(xo) >qoi(x(l):v ces Vis e e o xr?)'*'uglh(x(l)’ e Vi x)(l)) .

Since ¢;(x) and k;(x) are concave and differentiable, the inequality (3.5) is equiv-
alent to

k
(3.6) Vi(pi(x°)+zlu?jVihj(x°)=0 (i=1,...,n).
s

We shall also use the following relation, which holds as a result of the concavity of
h;(x). For every x° x'eR we have
(3.7 hj(xl)_ hj(xo) <(x'=x% th(xo) =2 (xi—x)'V; hj(xo) .

i=1

A weighted nonnegative sum of the functions ¢;(x) is given by

n

(3.8) o(x,7r) = Z roi(x), =0,

i=1
for each nonnegative vector re E". For each fixed r, a related mapping g(x, r) of
E™ into itself is defined in terms of the gradients V,;¢;(x) by

[71Viei ()]
(3.9 glx,r) = | 1 Vy0,2(%)

ril V;l (Pn (x)
We shall call g(x, r) the pseudogradient of 6(x, r). An important property of a(x, r)
is given by the following

DerNITION: The function o(x, r) will be called diagonally strictly concave for
xeR and fixed r >0 if for every x°, x! e R we have

(3.10)  (x'—x%g(x°, )+ (x°—x') g(x*,r)>0.
As shown later, a sufficient condition that a(x, r) be diagonally strictly concave
is that the symmetric matrix [G(x,r)+ G’ (x,r)] be negative definite for xeR,

where G(x, r) is the Jacobian with respect to x of g(x, r).
We first give the uniqueness theorem for orthogonal constraint sets where R=S.

THEOREM 2: If o(x, r) is diagonally strictly concave for some r=r7 >0, then the
equilibrium point x° satisfying (2.1) is unique.

PRrOOF: Assume there are two distinct equilibrium points x° and x'eR, each of
which satisfies (2.1). Then by the necessity of the Kuhn-Tucker conditions we have
for I=0,1and i=1,.. ., n:
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G11)  h(x)=0;
Ju! >0, ule E¥, such that

G12)  uh(e)=0,
ki
G13) Viou&) + 3, ui;Viby () =0.

We multiply (3.13) by 7;(x} —x{)’ for /=0 and by 7;(x? — x})’ for =1, and sumon .
This gives

3.149) B+y=0,

where
(3.15)  B=(x"—xg(x% P+ (x*—x")g(x', ),
and
n ki
(3.16) vy = Z Z F; {“?j(xil - x?)' Vihij(x?) + uilj(x? —xil)'vihij(xil)}
i=1j=1
n ki -
2 & 121 F; {”8‘ [hij(xil) - hij (x?);] + uilj [hij(x?) - hij(xil)]}
= ¥ F{wd B(x)+ui hy(x)}
i=1

The inequality follows from the concavity of the 4;;(x) and (3.7), and the last rela-
tion follows from (3.12). Then from (3.11) we have y >0. Since a(x, F) is diagonally
strictly concave, it follows from (3.10) that §>0. But this contradicts (3.14), so
that we cannot have two distinct equilibrium points and therefore x° is unique.

We now consider the general case where R is a coupled constraint set and is given
by (3.1). The values of the nonnegative multipliers u?, i=1, ..., n, given by the
Kuhn-Tucker conditions at an equilibrium point will, in general, not be related to
each other. We shall consider a special kind of equilibrium point such that each u)
is given by

(317 wl=ur; (i=1,...,n)

for some r >0 and ¥° >0. We will call this a normalized equilibrium point.

THEOREM 3: There exists a normalized equilibrium point to a concave n-person
game for every specified r >0.

Proor: For a fixed value r=7 >0, let

n

(318) p(x’ D) F) = Z Fi(pi(xh cees Viseoo xn) °

i=
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Using the fixed point theorem as in Theorem 1, there exists a point x° such that
(3.19)  p(x° x° 7) = max {p(x°, y, F) | h(y) =0} .

y
Then by the necessity of the Kuhn-Tucker conditions, (x®) >0, and 3u° >0, such
that u® A(x®)=0 and

) k
(3.20) FiVi(pi(x°)+.Zlu?Vihj(x°)=0 (i=1,...,n).
s

But these are just the conditions (3.3), (3.4), and (3.6), with u;=uj/F;, or u{ =u°/F,,
which are sufficient to insure that x° satisfies (2.1); x° is therefore a normalized
equilibrium point for the specified value of r=r.

THEOREM 4: Let 6(x, r) be diagonally strictly concave for every re Q, where Q is a
convex subset of the positive orthant of E". Then for each reQ there is a unique
normalized equilibrium point.

ProoOF: Assume that for some r=FeQ we have two normalized equilibrium
points x° and x'. Then we have for /=0, 1 and i=1,...,n,

321  h(xH=0;
Ju' >0, u'eFE¥, such that

3.22) u'h(xhH=0,
k

(3.23)  FVip(xh + _zl ulV;h;(x")=0.
=

We multiply (3.23) by (x! —x?)’ for /=0 and by (x} —x}) for /=1, and sum on i.
As in the proof of Theorem 2 this gives f+y=0, where f§ is given by (3.15) and

S 5 (U xl—x0Y Vil () + (< 1Y Vb (1)}

(B29) 9y=
=1ich
> u® [h(x")—h(x*)]+u""[h(x°) — h(x")]
= u”h(x')+u' h(x°) =0.

Then since o(x, F) is diagonally strictly concave we have >0, which contradicts
p+7=0 and proves the theorem.

We will now investigate the dependence of the normalized equilibrium point
on the value of r for the general case where R is a coupled constraint set. For an
orthogonal constraint set it follows from Theorem 2 that if o(x, r) is diagonally
strictly concave for some r=F >0, the equilibrium point x° is independent of r.
On the other hand it is not difficult to construct a simple example with a coupled
constraint set (see Figure 2) where the equilibrium point x° does depend on r.
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X5 Py(x)=—1x}+x;%,
P2(x)= "xg’xxxz

hy(x)=x,>0

L R ha(X)=x;>0
hy(x)=x;+x,—12>0
@1(x°)=max {01(x1, x3) I h(xy, J‘g)?O} =xJ(1-3x7)
\ — x° (r) Xy
@3(x°)=max {¢z(x?x X2) I h(x3, %) >0} =x{~1
X2
1 Xy, 1 s PSPy
x =) r +2r , X3=1-x)
1 2; +r2 , r>r 2 1
FIGURE 2 1rh2

In such a case we will now show that in a certain sense the equilibrium value of
¢; is a monotone increasing function of r;.

THEOREM 5: Let o(x, r) be diagonally strictly concave for re Q. Let r®, rieQ be
such that r} =r), i#q, and r; >r). Let x° and x*, with x* #x°, be the corresponding
unique normalized equilibrium points. Then the directional derivative of ¢,(x°) along
the ray (x; —x2) is positive.

Proor: Let #° and »! be the multipliers corresponding to the normalized equi-
librium points x° and x'. Then for /=1 and i=1, ..., n, and for /=0and i q,the
relations (3.21), (3.22), and (3.23) are satisfied with 7,=r?. For /=0and i=g, we have

k
(325) (12 =rHV,0,(x)+7riV,0,(x°) + ,-gl udV,h;(x%=0.

Multiplying by (x! —x?)’ for /=0 and by (x? —x}) for /=1, and summing, we now
get

(326)  (rg—ry) (xg —x9) V,0,(x")=—(B+7)<0,
or, since r} >r2,
(B27)  (x;—x%))'V,0,(x°)>0.

But this is just the directional derivative of ¢,(x°) along the ray (x} —x2).

A useful interpretation of Theorem 5 is obtained by observing that if ¢,(x) has
bounded second partial derivatives and if ||x;—x2|] is sufficiently small, then it
follows from (3.27) that ¢ (%) > ¢,(x°), where X=(x}, ..., x5, . . ., xJ). Since x°
is an equilibrium point, X cannot be a feasible point, and the value of ¢,(x) may
decrease as x goes from the infeasible point X to the new (feasible) equilibrium
point x', as illustrated in Figure 3. Because of the diagonal concavity property of
¢;(x), the dependence of ¢,(x) on x, will usually dominate its dependence on x;,
i#q. Therefore, it will usually be true that ¢, (x') > ¢, (x°). This is illustrated by the
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example of Figure 2, where it is easy to show that both d¢,/dr, and d¢,/or, are
nonnegative.

We complete this section by giving a sufficient condition on the functions ¢;(x)
that insures that o(x, r) is diagonally strictly concave. The condition is given in
terms of the m xm matrix G(x, r), which is the Jacobian of g(x, r) for fixed r >0.
That is, the jth column of G(x, r) is 0g(x, r)/0x;, j=1, ..., m, where g(x,r) is
defined by (3.9).

FIGURE 3

THEOREM 6: A sufficient condition that o(x, r) be diagonally strictly concave for
Xx€R and fixed r=7 >0 is that the symmetric matrix [G(x, F)+ G'(x, 7)] be negative
definite for xeR.

ProoF: Let x°, x! be any two distinct points in R, and let x(6) = 0x" + (1 —6)x°,
so that x()e R for 0< 0< 1. Now, since G(x, 7) is the Jacobian of g(x, 7), we have
dx(6)

do

28) 0D _ i), 5 2O Giup), px -9

or

(29 gl D—g,P) =[] G(0), A —x°)db .

Multiplying both sides by (x°—x')’ gives

(3.30)  (x°—x!) g(xt, )+ (xt —x°) g(x°F) = — f : (x* —x°) G(x(6), F)(x* —x°)db
=—1 f : (x* = x% [G(x(0), F) + G’ (x(0), F)] (x* —x°)db >0,

which shows that (3.10) is satisfied.
The interesting case where @;(x) is bilinear in the strategies x; emphasizes an
important relation between this condition and a stability matrix. We let

(3.31) (pi(x) = .21 [ei’j"'x; Cij]xj (i=1, oo ey n) >
j=

where e;; is a constant vector in E™ and C;; is an m; x m; constant matrix. The
bimatrix game [11, 12] is a special case of (3.31) with n=2, ¢;;=0, C;; =C,,=0,
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and C,,7#0, C,;#0. The two-person zero-sum game is a further specialization
With C21 = C’12-
From the definition (3.9) of g(x, r) and G(x, r) as its Jacobian matrix, we obtain

(3.32) G(x,r)=DC,
where C is the m x m constant matrix

_2C11 C12 « e Cln
CZ]. 2C22

(333) C=
Cnl zcun

and D is the diagonal positive definite matrix D=diag{r;}. For this bilinear case it
follows from Theorems 2 and 6 that we have uniqueness if there exists some 7 >0
such that

(334 DC+C'D=-1I

where D=diag{F,}. But this is just the condition which ensures that every eigen-
value of C has a negative real part (see, for example, Bellman [4]). Thus the same
condition which guarantees uniqueness also implies that C is a stability matrix.

A case which might be considered as a generalization of the two-person zero-
sum game is the n-person “skew-symmetric” game where C;;= —Cj;, i,j=1, .. .,n.
For such a game we will have [C+ C’] negative definite if [C;;+ C};] is negative
definite for i=1, ..., n.

4. GLOBAL STABILITY OF EQUILIBRIUM POINT

We shall now consider a reasonable dynamic model of a concave n-person game
in which each player changes his own strategy in such a way that the joint strategy
remains in R and his own payoff function would increase if all other players held
to their current strategy. That is, each player changes his strategy at a rate pro-
portional to the gradient with respect to his strategy of his payoff function, subject
to the constraints. If we let the proportionality constant for the ith player be r;, we
obtain the following system of differential equations for the strategies x;,

dx . i .
4.1) "Ei‘ = %;=r;V;p;(x) + j;l u;Vih;(x) (i=1,...,n),

where the vector  lies in a bounded subset U(x) of the positive orthant of E¥. The
effect of the summation term, with the appropriate choice of u, is to ensure that
starting with any xe R, the solution to (4.1) remains in R. In fact, the right hand
side of (4.1) is just the projection of the pseudogradient on the manifold formed by
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the active constraints at x. If we define an m x k matrix H(x), whose jth column is
Vh;(x),
4.2) HX)=[Vh (x) Vhy(x) ... Vh(X)],
and use the definition (3.9) of the pseudogradient g(x, r), we can define the mapping
f(x, u, r) of E™*¥—E™ for each fixed 7 >0, as follows:
@4.3)  f(x,u,P)=g(x, F)+H(x)u .
Then the system (4.1) can be written
4.9 x=f(x,u,7), ueU(x).
The set U(x) < E* is determined as follows:
@5 U@ ={u/IfCx, u, Dl =min | fx, v, DI},
=0 ]
where

@.6)  J=Jx)={jlhx)<0}.

Note that for every interior point x of R the set J(x) is empty and U(x) =0, so that
f(x, u, F)=g(x, 7), for every interior point of R.

We shall assume that g(x, r) and H(x) are continuous in x for all xeR, where
R>oRis a compact set such that every point of the compact set R is interior to R.

THEOREM 7: Starting at any point xe€ R a continuous solution x(t) to (4.4) exists,
such that x(t) remains in R for all t >0.

ProOF: Because of the continuity in x, and assuming only that u is measurable
in ¢, we have from the Carathéodory existence theory [5, 16] that a continuous
solution x(¢) exists, for x(f) in R, that satisfies (4.4) almost everywhere. Now suppose
that for some point x'eR on the trajectory x(f) we have h,(x’)<0. Then by the
continuity of x(¢) there must be an earlier point X on the trajectory such that
hy(X)=0 and h;(X)< 0. But from the latter and (4.4) we have

“.7 hy (%) =Vhj(X)%=Vh;(X)f<O0.
We let the corresponding value of u be #ie U(X). From the definition (4.3) we have
4.8) IfI>’=g'g+2u'H'g+u' H' Hii ,
or
4.9) A’ = 2Vh|(X)[g+Hu]=2Vh (X

DR (R)[g+Hal=2Vhi()f <0.
According to (4.9) we could decrease the norm | f| by increasing %, >0. But since
h,(X)=0,we have /e J(X) by (4.6),and therefore # cannot satisfy (4.5) so that & ¢ U(X).
This contradiction shows that there is no point x’ on the trajectory such that
hy(x")< 0 for any i, which proves the theorem.

By a direct application of the necessity of the Kuhn-Tucker conditions for the
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constrained minimization problem in (4.5) it is not difficult to demonstrate the
following:

LeEMMA: The nonzero elements of every vector ueU(x) are given by a vector
aeE¥* k< k, where
4100 ua=—(HH *Hgkx,7=>0.
The m x k matrix H=H(x) consists of k linearly independent columns of H(x)
selected from Vh;(x) for jeJ.

We now consider an equilibrium point X of the system of differential equations
(4.4). That is, for a fixed r=¥#, we will call X an equilibrium point of (4.4) if
“4.11) f(xu, =0, ueURX).

The system (4.4) will be called asymptotically stable in R if for every initial point
Xx€ R, the solution x(#) to (4.4) converges to an equilibrium point Xe R as t— 0.

THEOREM 8: If R is given by (3.1) and [G + G'] is negative definite for xe R, where
G is the Jacobian of g(x, F), then the system (4.4) is asymptotically stable in R.

Proor: The proof consists of showing that for x and u satisfying (4.4), the rate
of change of || f(x, u, 7)||? is always negative for f(x, u, ) #0. We first consider the
situation when the selection of columns in H(x) remains unchanged. Then since all
elements of u are zero except those given by i >0, we have from (4.3)

(4.12) f=g+Hu=g+ X @;Vh;,

and

(4.13)  f=Gx+ X u;Q;x+Hi,

where Q; is the Jacobian of V;(x) (or its equivalent, the Hessian of 4;(x)) and is
therefore negative semidefinite from the concavity of 4;(x). Now using (4.13) and
(4.4) we have

d d ’ ! ! - ’ 'IT~
“14) 3 I£1%=% 7 N=f f=f"Gf+Za,f'Q;f+f Hii.
We consider the last term and make use of (4.12) and (4.10) to show that
4.15) f'Hi=[¢H+#'H Hli=[g'H—g' HJii=0.
Then since [G+G'] is negative definite and the Q; are negative semidefinite, we
have
d , . _
(“4.16) 1 If12=%f'TG+G I+ Zu,;f Q;f< —elfl?

for some £>0.
A change in the columns selected for H(x) can never increase the value of | f||
since the selection as determined by (4.5) will always minimize | f||. It therefore
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follows from (4.16) that lim, , . | f|| =0, so that x(f)—X, where X is an equilibrium
point that satisfies (4.11). By Theorem 7, we have that Xe R, so that (4.4) is asymp-
totically stable in R.

An equilibrium point x°eR will be called globally asymptotically stable in R
if for every starting point xe R the solution x(¢) to (4.4) converges to x°. We shall
now show that with the appropriate concavity conditions the unique equilibrium
point x° of (2.1) is also globally asymptotically stable in R.

THEOREM 9: Let R be given by (3.1) and G be the Jacobian of g(x, r) for some
fixedr=r >0. Then if [G+ G'] is negative definite for x€ R, the normalized equilibrium
point x°(F) is globally asymptotically stable in R.

PRrOOF: Since [G+ G’] is negative definite, a(x, ) is diagonally strictly concave
by Theorem 6. Then by Theorem 4 there is a unique normalized equilibrium point
x%=x°(F) that satisfies (3.21), (3.22), and (3.23). But an equilibrium point X of
(4.4) also satisfies these three relations. The first relation is satisfied since XeR,
while (4.11) is equivalent to (3.22) and (3.23). Therefore we must have X=x°. By
Theorem 8, the system (4.4) is asymptotically stable in R. Since X=x° is unique,
the solution to (4.4) will converge to x° from every starting pointin R, and the system
is globally asymptotically stable.

5. DETERMINATION OF EQUILIBRIUM POINT

The global stability of the equilibrium point permits us to determine the unique
equilibrium point for any concave game by appropriate mathematical programming
computational methods. In particular, gradient methods for a concave nonlinear
programming problem [6, 17] can be modified to find the equilibrium point for a
concave game. Such methods take finite steps in the direction of the gradient of the
function to be maximized, taking account of the constraints by projection, or
appropriate penalties, in order to remain in the feasible region R. The essential
idea in applying one of these gradient methods to the concave game problem is to
use the vector g(x, r), given by (3.9), as if it were the gradient of a function of x,
where the function is to be maximized for xeR. The solution to this “‘maximiza-
tion” problem willgive a point x° e R where the Kuhn-Tuckerconditions (3.21), (3.22),
and (3.23) are satisfied. But as has been shown, such a point is the unique equilib-
rium point for the concave game. Note that the optimality conditions involve only
the gradient g(x, r) and do not require that the function itself be known. The gradient
projection method can be considered as a finite difference approximation to the
system (4.4), where the solution is obtained by a sequence of finite steps in the
direction of the projected gradient f(x, u, 7). The only practical difference between
this and a true maximization problem is that in the latter case we choose the step
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length so as to give a maximum of the true function value along the chosen ray,
whereas for the equilibrium point problem we choose the step length so as to
minimize the norm of f.

To show how this is done we consider the finite difference approximation to (4.4)
given by
5.1) xIM=xI4ddfd,ulF), WeUl),

where 7/ is the step length to be selected.

THEOREM 10: If the assumptions of Theorem 8 are satisfied, then a finite step length
©J can be chosen so that |71 < | f7, for ff #0, where fi=f(x', ul, F).

ProOF: For u=u’ held fixed we have
(52) P R =f 4 Fe T =),
where F is a mean value of the Jacobian of £, so that f'Ff< 0, for f#0. Then from
(5.1) we have

(3)  PH=(+vPf .
The norm of f/*! is minimized by the choice
(5.4  J=—f"FF||Ef|*>0,
which gives
(5.5 IF* 2= 1£12+ 7 EF < IF11% .
Finally, since f/*1 =f(x/*1, u’*1, 7), where u/ *1 e U(x/*1), it follows from (4.5) and
(5.2) that | A< A< 1AL
The convergence of this finite difference procedure to the unique equilibrium
point x° can be shown as in Theorem 8.

University of Wisconsin
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